Persistence of Generalized Roll-Waves under Viscous Perturbation

نویسنده

  • Valérie Le Blanc
چکیده

The purpose of this article is to study the persistence of solution of a hyperbolic system under small viscous perturbation. Here, the solution of the hyperbolic system is supposed to be periodic: it is a periodic perturbation of a roll-wave. So, it has an infinity of shocks. The proof of the persistence is based on an expansion of the viscous solution and estimates on Green’s functions. Keyword: vanishing viscosity, roll-waves, Green’s function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Article Modeling of Coupled Roll and Yaw Damping ofa Floating Body in Waves

A mathematical model is described to investigate the damping moment of weakly nonlinear roll and yaw motions of a floating body in time domain under the action of sinusoidal waves. The mathematical formulation for added mass moment of inertia and damping is presented by approximating time-dependent coefficients and forcing moments when small distortion holds. Using perturbation technique, we ob...

متن کامل

Nonlinear Stability of Shock Waves for Viscous Conservation Laws

where u = u{x,t) E R , the flux f(u) is a smooth n-vector-valued function, and the viscosity B(u) is a smooth n x n matrix. We are interested in the stability of traveling waves, the "viscous shock waves", for (1). It is shown that when the initial data are a perturbation of viscous shock waves, then the solution converges to these viscous shock waves, properly translated in space, in the unifo...

متن کامل

Pointwise Green’s Function Estimates Toward Stability for Degenerate Viscous Shock Waves

We consider degenerate viscous shock waves arising in systems of two conservation laws, where degeneracy here describes viscous shock waves for which the asymptotic endstates are sonic to the hyperbolic system (the shock speed is equal to one of the characteristic speeds). In particular, we develop detailed pointwise estimates on the Green’s function associated with the linearized perturbation ...

متن کامل

Viscous Shock Wave Tracing, Local Conservation Laws, and Pointwise Estimates by Tai-ping Liu and Shih-hsien Yu

We introduce a new approach to decompose a system of viscous conservation laws with respect to each characteristic wave structures. Under this new decomposition, the global wave interactions of the system are reduced to coupling of nonlinear waves around constant states outside shock region and a scalar conservation law in the shock region to determine the behavior of local internal shock layer...

متن کامل

L2-contraction of Large Planar Shock Waves for Multi-dimensional Scalar Viscous Conservation Laws

We consider a L-contraction (a L-type stability) of large viscous shock waves for the multi-dimensional scalar viscous conservation laws, up to a suitable shift. The shift function, depending both on the time and space variables, solves a viscous HamiltonJacobi equation with source terms. We consider a suitably small L-perturbation around a viscous planar shock wave with arbitrarily large stren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2013